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Abstract In this paper we develop a reduction method for multiple time scale
stochastic reaction networks. When the transition-rate matrix between different states
of the species is available, we obtain systems of reduced equations, whose solutions
can successively approximate, to any degree of accuracy, the exact probability that the
reaction system be in any particular state. For the case when the transition-rate matrix
is not available, one needs to rely on the chemical master equation. For this case, we
obtain a corresponding reduced master equation with first-order accuracy. We illus-
trate the accuracy and efficiency of both approaches by simulating several motivating
examples and comparing the results of our simulations with the results obtained by
the exact method. Our examples include both linear and nonlinear reaction networks
as well as a three time scale stochastic reaction-diffusion model arising from gene
expression.

Keywords Multiple time scale analysis · Chemical master equation · Stochastic
simulation · Stochastic reaction-diffusion

1 Introduction

At thermal equilibrium, the evolution of a family of chemically reacting species is
often described by a system of nonlinear ordinary differential equations of the form
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dc
dt
= V R(c) (1.1)

where c is an s-dimensional vector whose i th component is the concentration of spe-
cies i, V is the stoichiometric matrix whose (i, j)th component represents the change
of the stoichiometric amount of species i by the occurrence of reaction j , and R(c)
denotes the reaction rate function which is determined by mass-action kinetics. How-
ever, if some of the species consist of only a small number of molecules, then the
stochastic fluctuations inherent in the molecular interactions may affect the dynamics
of the system [10]. To capture these effects, one needs to model these species as a
discrete random variable.

Let ni (t) denote the number of molecules of species i at time t and let n(t) =
(n1(t), n2(t), . . . , ns(t)) be a random vector with joint probability density p(n, t).
For a system with r reactions, the master equation [6], which governs the evolution
of p(n, t) is

dp(n, t)

dt
=

r∑

�=1

[Q�(n − V�)p(n − V�, t)− Q�(n)p(n, t)] (1.2)

where V� is the �th column of V and Q� is the propensity function of the �th reaction
defined by

Q�(n) = c�h�(n) . (1.3)

In (1.3), c� �t is the probability that the �th-reaction occurs during the time interval
(t, t + �t) and h�(n) is formed from the product of the reactants involved in the
�th-reaction according to mass-action kinetics.

The master equation can also be written as a system of linear equations by writing
down the state diagram which contains all the accessible states of n and the transition
rates between them. Let m denote the k possible states of n and let p(t) be the k-vector
with pi (t) = Prob{n(t) = mi }, where mi denotes i th state of n. Then p satisfies the
Kolmogorov system

dp(t)

dt
= K p(t) (1.4)

where K is the transition-rate matrix defined, for i �= j , by

Ki j =
{

Q�(n) if mi = m j + V� for some � = 1, . . . , r
0 otherwise

(1.5)

and K j j = −∑
i �= j Ki j . In (1.5), mi = m j + V� means that state mi is accessible

from state m j by the occurrence of reaction �.

Remark 1 A matrix K with the properties that Ki j ≥ 0 for i �= j and
∑

i Ki j = 0 for
all j is called a Markov chain generator. A vector p is called a probability vector if
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pi ≥ 0 and
∑

pi = 1. Clearly if K is a Markov chain generator, then 1 = (1, . . . , 1) is
a left eigenvector corresponding to the eigenvalue 0. Furthermore, if K is irreducible,
then 0 is a simple eigenvalue and the corresponding right eigenvector may be chosen
to be a probability vector. This is well-known and can be proved from the Gerschgorin
and Perron-Frobenius theorems. If K is a Markov chain generator and p is the solution
to (1.4) with p(0) a probability vector, then p(t) is a probability vector for t > 0 [3, ch.
4.2]. The random vector n(t) is a continuous-time Markov chain with discrete states.

The solution of (1.4), namely p(t) = eK t p(0), is difficult or impossible to com-
pute if K is large or if it is infinite dimensional when there are infinitely many states.
Therefore, one often resorts to the study of (1.2). The simulation of the master equa-
tion by Monte Carlo method is well known to be slow and inefficient. However, in
many reaction networks, reactions may occur at different time scales and one can
often exploit these properties to obtain an efficient and accurate approximation to the
solutions of (1.2) and (1.4) [2,11,12,16,17]. All these references are based on the
quasi-steady-state or similar assumption applied to stochastic systems. For example,
Peleš et al. presented a finite state projection method and obtained an approximate
master equation on slow time scale for certain linear reaction systems [11]. Cao et al.
presented a slow time scale stochastic simulation algorithm for reaction systems and
illustrated numerical results for a system with one independent fast species [2].

The purpose of this paper is to develop a reduction method for certain multiple
time scale reaction networks with bounded state space1 and illustrate how the reduc-
tion method, described in Theorems 1 and 2, can be applied to simulate real systems
accurately and efficiently. For two time scale networks, the main assumption in Theo-
rems 1 and 2 is that all components of the fast subsystem are strongly connected. Our
reduction method may also be applied to three or more time scale reaction networks.
We illustrate this by considering a stochastic reaction-diffusion model in Sect. 4.4.

There is a large body of recent literature on the simulations of two time scale stochas-
tic reaction networks (see the references at the end of this paper). Our contribution is
that we obtain a reduction method that can be applied to both linear and nonlinear, two
or higher time scale systems. Our reduction method formally gives an approximation
of the exact solution with error O(εi ) for any i = 1, 2, . . . , so that the approximation
can be as accurate as desired. To the best of our knowledge, such reduction method has
not been reported in the chemical reaction network literature before. Also, regarding
diffusion as a medium time scale reaction and applying reduction method to simulate
the resulting three time scale problem has not been done before. The usual way of
handling diffusion in a stochastic system is given in [15]. All the networks considered
in this paper, with the exception of Sect. 3.4, are nonlinear. Linear systems have been
considered by Gadgil et al. [4].

The organization of the paper is as follows. Section 2 contains the development of
our reduction method and the proofs of Theorems 1 and 2. The numerical implementa-
tion of the reduction method is explained in Sect. 3. Section 4 contains four examples
to illustrate the efficiency and accuracy of the reduction method.

1 Every closed reaction network has bounded state space. Closed here means no molecules are being added
to or removed from a system. However, a system with bounded state space is not necessarily closed, e.g.
A � B → φ.
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We end this section by introducing some notations. For the rest of this paper, vectors
are boldfaced and assumed vertical, 1T

m = [1, . . . , 1] denotes a vector with m ones,
matrices are capitalized, Im is the identity matrix of size m,N (A) and R(A) denote
the null space and range of the matrix A, respectively, and zero eigenvector means the
eigenvector corresponding to the zero eigenvalue.

2 Multiple time scale stochastic reaction networks

We first consider the two time scale case. Let 0 < ε � 1 be the separation parameter
between the two time scales. We assume that (1.1) can be written as

dc
dt
= 1

ε
V f R f (c)+ V s Rs(c) (2.1)

where R f and Rs are the fast and slow reaction rate functions and V f and V s are
the stoichiometric matrices for the fast and slow reactions, respectively. The two time
scale master equation takes the form

dp(n, t)

dt
= 1

ε

∑

�

[
Q f

� (n − V f
� ) p(n − V f

� , t)− Q f
� (n) p(n, t)

]

+
∑

k

[
Qs

k(n − V s
k ) p(n − V s

k , t)− Qs
k(n) p(n, t)

]
(2.2)

where Q f and Qs are the propensity functions for the fast and slow reactions, respec-
tively. The two time scale system for (1.4) is

dp(t)

dt
=

(
1

ε
K f + K s

)
p(t) (2.3)

where K f and K s are the transition-rate matrices for the fast and slow reactions,
respectively.

System (2.3), after multiplying throughout by ε, is an example of a singular per-
turbation problem. For such problems, there is usually an initial short period of time
where there is a rapid change in p so that εdp/dt = O(1). This period is called the
fast time scale. After this short initial period, we enter a long period of slow time scale
where dp/dt is bounded and hence K f p = O(ε).

Reduction methods for the two time scale networks are given in the following the-
orems. The proof of Theorem 2 may be found in [9] but in order for the paper to be
self-contained, we outline the proofs assuming that all the components of the fast sub-
system are strongly connected. Fast subsystem means the resulting system obtained
after removing all the slow reactions in a reaction network and a component of the fast
subsystem means a maximal connected subgraph of the graph of the fast subsystem.
A component is said to be strongly connected if there is a path from each node in the
component to every other node. Note that an isolated node is a strongly connected
component.
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Remark 2 If we assume that all the components of a fast subsystem are strongly
connected, then the state diagram may be decomposed to a collection of fast compo-
nents, say D1, D2, . . . , Dm , where within each fast component, only fast reactions
occur and transformation between two fast components is via a single slow reaction.
(See Sect. 4.2 for an example.) The transition rate matrix K f is a block diagonal
matrix and each fast component, Di , gives rise to a block, K f

i , which is an irreducible

matrix and a Markov chain generator. The size of K f
i is equal to the number of states

in Di . Suppose K f has m blocks and K f
i has dimension mi ×mi . Then clearly 1T

mi
is

a left zero eigenvector of K f
i . Let the right zero eigenvector be denoted by ���i which,

according to Remark 1, may be chosen to be a probability vector. If we pad ���i with
the right number of zeros, then it becomes a zero right eigenvector of K f . Since 0
is a simple eigenvalue of K f

i for each i , we conclude that N (K f ) has dimension m.
The total number of states in the state diagram is equal to the sum of all the states in
the fast components; i.e. k = m1 + · · · + mm . Let L = diag(1T

m1
, . . . , 1T

mm
) which

is an m × k matrix and let � = diag(���1, . . . ,���m) which is a k × m matrix. Then
L� = Im and L K f = 0 since each block of K f is a Markov chain generator. Here
Im denotes the m × midentity matrix.

In the next theorem, we obtain reduced equations in the slow time scale by utilizing
a perturbation analysis.

Theorem 1 Suppose each component of the fast subsystem is strongly connected.
Then one can obtain a sequence of functions {r̃i , i = 0, 1, 2, . . . } such that in the
slow time scale, r̃i satisfies the reduced m × m system

d r̃i

dt
= L K s�r̃i + L K sui , (2.4)

where u0 = 0 and ui is the unique solution of

K f ui = dui−1

dt
+ (�L − I )K s(ui−1 +�r̃i−1) and Lui = 0 (2.5)

for i = 1, 2, . . . . The initial condition for each r̃i is given by r̃0(0) = Lp(0) and
r̃i (0) = 0 for i ≥ 1. Furthermore, in the slow time scale, the error between the
solutions of (2.4) and (2.3) is given formally by

‖
i∑

k=0

εk(uk +�r̃k)− p‖ ≈ O(εi+1) , i = 0, 1, 2, . . . . (2.6)

Proof System (2.3) is a singular perturbation problem. After an initial time period
of order ε, the fast reactions are in equilibrium and we consider the outer expansion
p(t) ∼∑∞

i=0 εi ri (t) in the slow time scale. Inserting the outer expansion into system
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(2.3) and multiplying the result by ε, we obtain

∞∑

i=0

εi+1 dri (t)

dt
=
∞∑

i=0

εi (K f + εK s)ri (t) .

Comparing the coefficients of the εi terms, we have

ε0 : 0 = K f r0 (2.7)

ε1 : dr0

dt
= K sr0 + K f r1 (2.8)

ε2 : dr1

dt
= K sr1 + K f r2 (2.9)

...
...

εi+1 : dri

dt
= K sri + K f ri+1 (2.10)

...
...

Recall the definitions and properties of K f , L and � from Remark 2. Let

Rk = N (K f )⊕R((K f )T ) . (2.11)

From (2.7), we have K f r0 = 0 and thus r0 = � r̃0 for some r̃0. Substituting this into
(2.8) and multiplying the resulting system by L , we have

d r̃0(t)

dt
= L K s� r̃0(t). (2.12)

The proof of (2.4) for the case i = 0 is complete.
To find r̃1, from (2.8) and (2.12), we have

K f r1 = dr0

dt
− K sr0 = �

d r̃0

dt
− K s�r̃0 = �L K s�r̃0 − K s�r̃0

= (�L − I )K s�r̃0. (2.13)

Let the right hand side of (2.13) be denoted by j1. From Remark 2, L� = Im . Hence,
Lj1 = 0 which implies that j1 ∈ R(K f ). Let r̃1 = Lr1 and let u1 = r1−�r̃1 so that

r1 = u1 +�r̃1. (2.14)

Since K f � = 0 and L� = Im , it follows that

K f u1 = K f (r1 −�r̃1) = K f r1 = j1 and Lu1 = L(r1 −�r̃1) = r̃1 − r̃1 = 0.
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Since the nullspace of each block of K f has dimension one, one sees that u1 is the
unique solution of the linear systems K f x = j1 and Lx = 0. The equations K f u1 = j1
and Lu1 = 0 are system (2.5) with i = 1. After solving for u1 and multiplying Eq. 2.9
by L , we see that r̃1 satisfies the nonhomogeneous reduced system

d r̃1

dt
= L

dr1

dt
= L K sr1 = L K s�r̃1 + L K su1. (2.15)

This completes the proof of (2.4) for i = 1. For the proof of the case i = 2, we first
obtain from (2.14), (2.9) and (2.17)

K f r2 = dr1

dt
− K sr1 = du1

dt
+�

d r̃1

dt
− K s(u1 +�r̃1)

= du1

dt
+�(L K s�r̃1 + L K su1)− K s(u1 +�r̃1)

= du1

dt
+ (�L − I )K su1 + (�L − I )K s�r̃1. (2.16)

Let the right hand side of (2.16) be denoted by j2. Let r̃2 = Lr2 and let u2 = r2−�r̃2.
Then

K f u2 = K f (r2 −�r̃2) = K f r2 = j2 and Lu2 = L(r2 −�r̃2) = r̃2 − r̃2 = 0.

Hence u2 is the unique solution of linear systems K f x = j2 and Lx = 0. The equa-
tions K f u2 = j2 and Lu2 = 0 are system (2.5) with i = 2. Multiplying (2.10) for the
case i = 2 by L , one obtains the reduced equation for r̃2

d r̃2

dt
= L

dr2

dt
= L K sr2 = L K s�r̃2 + L K su2, (2.17)

which completes the proof of (2.4) for i = 2. The proof of cases i ≥ 3 can be done
similarly after defining r̃i = Lri and ui = ri −�r̃i for each i ≥ 3.

To obtain the initial condition for each r̃i , one should consider the matching condi-
tion between outer and inner expansions. The formal expression for the inner expansion
is given by

∑∞
i=0 εi si

( t
ε

)
. Substituting this into (2.3), multiplying by ε, and letting

τ = t/ε, we have

∞∑

i=0

εi dsi (τ )

dτ
=
∞∑

i=0

εi (K f + εK s)si (τ )
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Comparing the coefficients of εi , we obtain

ε0 : ds0

dτ
= K f s0 (2.18)

...
...

εi : dsi

dτ
= K f si + K ssi−1 (2.19)

...
...

From (2.18), d Ls0
dτ
= L K f s0 = 0 so that Ls0(t) = Ls0(0) = Lp(0) for all t > 0.

Since r0(0) = s0(∞), the initial condition for r̃0 is given by r̃0(0) = Lr0(0) = Lp(0).
Moreover, for the initial condition to be matched, it should be satisfied that ri (0) = 0
for all i ≥ 1. Thus, r̃i (0) = Lri (0) = 0 for all i ≥ 1. Formal error estimate (2.6)
follows from the outer expansion of p(t) and the relation ri = �r̃i + ui . The proof
of the theorem is complete. ��
Remark 3 The assumption of Theorem 1 can be relaxed by only assuming that each
fast component Di has a unique equilibrium probability. This implies that 0 is a simple
eigenvalue for each K f

i and the argument given in Theorem 1 is valid. Note that if

each component of the fast subsystem is strongly connected, i.e. if each block K f
i is

irreducible, then each fast component Di has a unique equilibrium probability. Here
is an example of a system for which there is a unique equilibrium probability but K f

is reducible, A→ B. Here is an example of a system for which there is not a unique
equilibrium probability and the null space of K f has dimension two, A→ B, A→ C .

Remark 4 From the paragraph after display (2.3), we see that in the slow time scale,
K f p = O(ε). Quasi-steady state assumption (QSSA) for system (2.3) means assum-
ing K f p = 0 which implies that p = �p̃. Replacing p by �p̃ in system (2.3) and
multiplying the result by the matrix L on the left, we obtain the reduced system
dp̃/dt = L K s�p̃. However, QSSA alone cannot yield higher order approximations
as given in Theorem 1.

Let A f be the matrix whose rows form a basis of the vector space N ((V f )T ) and
let ñ = A f n. Then it is easy to see that ñ is constant in each fast component and only
changes when a slow reaction occurs.

Theorem 2 Let the hypotheses of Theorem 1 be satisfied. Then the reduced master
equation in the slow time scale for (2.2) is

d p̃(ñ, t)

dt
=

∑

�

[
Q̃s

�(ñ − Ṽ s
� ) p̃(ñ − Ṽ s

� , t)− Q̃s
�(ñ) p̃(ñ, t)

]
(2.20)

where Ṽ s = A f V s, Q̃s(ñ) = E[Qs(n)|ñ], and p̃(ñ, t) is the joint density of the
random vector ñ(t).

Proof From Remark 2, K s , which is a sparse matrix, can also be partitioned into
blocks and the (i, j)th-block, K s

i j , has dimension mi ×m j . One can easily show that
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the matrix L K s� is a Markov chain generator by using the structures of the matrices
L ,�, and a Markov chain generator K s . The proof of this fact also may be found in
[9] and will not be given here. The (i, j)th-component of L K s� can be computed as
follows,

(L K s�)i j = (diag[1T
m1

, . . . , 1T
mm
] K s diag[�1,�2, . . . ,�m])i j

= 1T
mi

⎡

⎢⎢⎢⎣

(K s
i j )11 . . . (K s

i j )1m j

(K s
i j )21 . . . (K s

i j )2m j

...
...

...

(K s
i j )mi 1 . . . (K s

i j )mi m j

⎤

⎥⎥⎥⎦ � j

=
m j∑

q=1

mi∑

p=1

(K s
i j )pq(� j )q . (2.21)

Recall from Remark 2 that in a state diagram, each row corresponds to a fast com-
ponent Di that has mi states. The (i, j)th-block of K s, K s

i j , is the transition rate matrix
from the fast component D j to the fast component Di by a slow reaction � and its
(p, q)th-entry, (K s

i j )pq , is the transition rate from the qth-state of D j to the pth-state
of Di . Hence, given q, the summation over p in (2.21) consists of only one non-zero
term. Also, (� j )q = Prob(n = ñ j,q |ñ = ñ j ) where ñ j,q is the qth-state of D j .
Therefore, from (2.21), we have

(L K s�)i j =
∑

q

c�h�(ñ j,q) Prob(n = ñ j,q |ñ = ñ j )

= c�E[h�(n)|ñ = ñ j ]
= E[Qs

�(n)|ñ = ñ j ]. (2.22)

System (2.12) is the analog of system (1.4) on slow time scale with L K s� replac-
ing K and the fast components {D1, . . . , Dm} replacing the states {m1, . . . , mk}. The
relationship between the coefficient matrix K in (1.4) and the propensity function Q
in (1.2) is given by (1.5). Therefore, (L K s�)i j = Q̃s

�(ñ) if D j is transformed to Di

via the slow reaction �. From (2.22), Q̃s
�(ñ) = E[Qs

�(n)|ñ]. The proof of Theorem 2
is complete. ��

Higher time scale reaction networks may be reduced to several two time scale
problems. For example, consider the three time scale reaction network

dp
dt
=

(
1

ε2
K f + 1

ε1
K m + K s

)
p (2.23)

where 0 < ε2 � ε1 � 1 and K f , K m, K s ≈ O(1). The first reduction is to assume
that the fast reactions corresponding to 1

ε2
K f is in equilibrium. From Theorem 1, the
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reduced network is

dp1

dt
= L1

(
1

ε1
K m + K s

)
�1p1 ≡

(
1

ε1
K m

1 + K s
1

)
p1 (2.24)

where L1 and �1 are the matrices formed from the left and right zero eigenvectors of
K f . A second reduction is to assume that the fast reactions corresponding to 1

ε1
K m

1
in Eq. 2.24 is in equilibrium. Doing so, we obtain

dp2

dt
= L2 K 1

s �2p2 (2.25)

where L2,�2 are matrices formed from the left and right zero eigenvectors of K m
1 .

One can also write Eq. 2.23 as a three time scale master equation

dp(n, t)

dt
= 1

ε2

∑

i

[
Q f

i (n − V f
i ) p(n − V f

i , t)− Q f
i (n) p(n, t)

]

+ 1

ε1

∑

j

[
Qm

j (n − V m
j ) p(n − V m

j , t)− Qm
j (n) p(n, t)

]

+
∑

k

[
Qs

k(n − V s
k ) p(n − V s

k , t)− Qs
k(n) p(n, t)

]
(2.26)

where V f , V m and V s are the stoichiometric matrices and Q f , Qm and Qs are the
propensity functions for the fast, medium and slow reactions, respectively. Similar to
a two time scale system, one can obtain a reduced equation for (2.26). To this end, we
need to introduce some notations. We define the medium subsystem of a reaction net-
work as the one obtained when all the fast and slow reactions are removed. Let A f be
a matrix whose rows form a (nonnegative integer valued) basis of N (V f )T . Let ñ =
A f n, Ṽ m = A f V m, Ṽ s = A f V s, Q̃m(ñ) = E[Qm(n)|ñ], Q̃s(ñ) = E[Qs(n)|ñ],
and let Am be a matrix whose rows form a (nonnegative integer valued) basis of the
vector space N ((Ṽ m)T ).

Theorem 3 Suppose all the components of the fast and medium subsystems are
strongly connected. Then the reduced master equation in the slow time scale for (2.26)
is

d p̂(n̂, t)

dt
=

∑

k

[
Q̂s

k(n̂ − V̂ s
k ) p̂(n̂ − V̂ s

k , t)− Q̂s
k(n̂) p̂(n̂, t)

]
(2.27)

where n̂ = Am ñ, V̂ s = Am Ṽ s, Q̂s
k(n̂) = E[Q̃s

k(ñ)|n̂], and p̂(n̂, t) is the joint density
of the random vector n̂(t).
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Proof By considering the three time scale system as a two time scale system with fast
and medium/slow reactions, one can rewrite Eq. 2.26 as

dp(n, t)

dt
= 1

ε2

∑

i

[
Q f

i (n − V f
i ) p(n − V f

i , t)− Q f
i (n) p(n, t)

]

+
∑

�

[
Qms

� (n − V ms
� ) p(n − V ms

� , t)− Qms
� (n) p(n, t)

]
(2.28)

where V ms = [V m |V s] and Qms
� is either the medium propensity function 1

ε1
Qm

j
or the slow propensity function Qs

k , depending on the corresponding stoichiometry.
Applying Theorem 2 to Eq. 2.28, we obtain a reduced equation

d p̃(ñ, t)

dt
=

∑

�

[
Q̃ms

� (ñ − Ṽ ms
� ) p̃(ñ − Ṽ ms

� , t)− Q̃ms
� (ñ) p̃(ñ, t)

]
(2.29)

where Ṽ ms = A f V ms, Q̃ms
� (ñ) = E[Qms

� (n)|ñ] and p̃(ñ, t) is the joint density of the
random vector ñ(t). If we split V ms and Qms into medium and slow reaction parts,
we can rewrite Eq. 2.29 as

d p̃(ñ, t)

dt
= 1

ε1

∑

j

[
Q̃m

j (ñ − Ṽ m
j ) p̃(ñ − Ṽ m

j , t)− Q̃m
j (ñ) p̃(ñ, t)

]

+
∑

k

[
Q̃s

k(ñ − Ṽ s
k ) p̃(ñ − Ṽ s

k , t)− Q̃s
k(ñ) p̃(ñ, t)

]
(2.30)

where Ṽ m, Ṽ s, Q̃m(ñ) and Q̃s(ñ) are defined above. Note that Eq. 2.30 is the master
equation of the reduced system obtained after removal of the fast reactions and it is a
two time scale master equation. Let Am be a matrix whose rows form a (nonnegative
integer valued) basis of the vector space N ((Ṽ m)T ). Applying Theorem 2 to Eq. 2.30
again, we obtain

d p̂(n̂, t)

dt
=

∑

k

[
Q̂s

k(n̂ − V̂ s
k ) p̂(n̂ − V̂ s

k , t)− Q̂s
k(n̂) p̂(n̂, t)

]
(2.31)

where n̂, V̂ s, Q̂s
k(n̂) and p̂(n̂, t) are defined in the statement of the theorem. The

proof of Theorem 3 is complete. ��

3 Numerical methods

3.1 Finding the transition probability c�

We need to find c�, which is the probability that the �th-reaction occurs per unit time,
from the reaction rate constant k�, which is what is usually given. For example, con-
sider the second-order reaction A + B → P . Then the number of molecules of P
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produced per unit time is given by #P = c�(# A)(#B) and the number of moles of P
produced per unit time is [P] = k�[A][B]. Since #X = [X ]NAV where NA is the
Avogadro’s number and V is the volume, we have k� = c�/(NAV ). Similarly, for the
first-order reaction A→ P, k� = c� and for the reaction 2A→ P, c� = 2k�/(NAV ).

3.2 Gillespie algorithm and the τ—leaping method

To simulate the full system (1.2), we follow the recipe in [5]. Suppose the state of
the system at time t is n(t). Let aν = cνhν (see (1.3)) where aν is the propensity of
νth reaction in the reaction network. Then the probability of the occurrence of the
νth-reaction in the time interval (t, t + dt) is aν(n) dt . If P0(τ ) is the probability that
no reaction occurred in the time interval (t, t+τ), then P0(τ+dτ) = P0(τ )[1−a0dτ ]
where a0 = ∑r

ν=1 aν . This implies that d P0/dτ = −a0 P0, P0(0) = 1. Solving it,
we have P0(τ ) = exp[−a0τ ]. To find when the next reaction will occur and which
one, we generate two random numbers r1, r2 from the unit-interval uniform random
number generator. Let τ = (1/a0) ln(1/r1) and let µ be the integer that satisfies∑µ−1

ν=1 aν < r2a0 ≤∑µ
ν=1 aν . Then the next reaction to occur will be reaction µ and

it will occur at time t + τ . One must then update n(t + τ) from n(t) using reaction µ

and the process is repeated. The same method may be used to simulate (2.20) except
that one must find or approximate the propensity function Q̃s(ñ) = E[Qs(n)|ñ] of
the slow reaction which will be discussed in the next section.

While the Gillespie algorithm is exact and very general, it is well known that the
algorithm is often computationally very intensive. This is because if a reaction is very
fast, then the number of the reaction occurred in a given time interval will be very
large. For such a system, the τ -leaping method may be employed to speed up the
computations [7].

The τ -leaping method is based on the assumption that there exists τ > 0 such that
in the time interval [t, t + τ), the propensities ai (n(t)), i = 1, . . . , r for all reactions
do not change appreciably and may be assumed to be constant. If this leaping condition
is satisfied, then the number of occurrences of the i th-reaction in [t, t+τ) is a Poisson
random variable with mean ai (n(t))τ . The procedure of the tau-leaping formula is as
follows:

Step 1: Choose a sample value bi from the independent Poisson random variable
Pi (ai (n(t)), τ ) for each i = 1, . . . , r .

Step 2: Let n(t + τ) = n(t)+∑r
i=1 Vi bi .

Step 3: Update t = t + τ and go back to Step 1.

We shall employ this method in Sect. 4.4.

3.3 Finding E[Qs(n) | ñ]

We need to find Prob(n = ñ j,q | ñ = ñ j ) which is the same as ��� j according to the
proof of Theorem 2. If one can construct K f , then ��� j consists of the zero eigenvec-

tors of K f
j . If the matrix K f is not available, then we have to write down the master
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equation of the fast subsystem and compute the equilibrium distribution as t → ∞.
This is because all the eigenvalues of K f besides the zero eigenvalue, which is sim-
ple, are negative so that the solution of q̇ = K f

i q converges to ���i as t → ∞. An

example of how to do this for the fast reaction A + B−→←−C is given in Appendix 1.
For many other fast subsystems, finding the equilibrium distribution is difficult if not

impossible. For example, consider the fast reactions A + B
c1−→←−

c−1

C and A + X
c3−→←−

c−3

Y .

Let n1(t), n2(t), n3(t), n4(t) and n5(t) denote the number of molecules of A, B, C, X
and Y at time t , respectively, and let n(0) = (a0, b0, 0, x0, 0). Then it is clear that
n1(t) = a0 − n3(t)− n5(t), n2(t) = b0 − n3(t), and n4(t) = x0 − n5(t). The master
equation for the random vector n = (n3, n5) is

dp(n, t)

dt
= c1 (a0 − n3 − n5 + 1)(b0 − n3 + 1)p(n3 − 1, n5, t)

+ c−1 (n3 + 1)p(n3 + 1, n5, t)+ c3 (a0 − n3 − n5 + 1)(x0 − n5 + 1)

×p(n3, n5 − 1, t)+ c−3 (n5 + 1)p(n3, n5 + 1, t)− [ c1(a0 − n3 − n5)

×(b0 − n3)+ c−1n3 + c3(a0 − n3 − n5)(x0 − n5)+ c−3n5 ] p(n, t)

with initial condition p(0, 0) = 1. The equilibrium distribution is limt→∞ p(n, t).
Let G(z1, z2, t) =∑

zi
1z j

2 p(i, j, t) be the moment generating function of p where
the summation is over all non-negative integers i, j . Then p(m, n, t) = (1/m!n!) ∂m+n

G(z1, z2, t)/∂zm
1 ∂zn

2 evaluated at z1 = z2 = 0. If we multiply the above master equa-

tion by zi
1z j

2 and sum over all i, j , we obtain a partial differential equation for G. Let
us assume that G̃(z1, z2) = limt→∞ G(z1, z2, t) exists. Then formally G̃ satisfies the
following equation

c1z2
1(z1 − 1)G̃z1z1 + c3z2

2(z2 − 1)G̃z2z2 + z1z2(c1z1 + c3z2 − c1 − c3)G̃z1z2

+ A(z1, z2, c1, c−1, c3, c−3, b0)G̃z1 + A(z2, z1, c3, c−3, c1, c−1, x0)G̃z2

+[c1a0b0z1 + c3a0x0z2 − a0(c1b0 + c3x0)]G̃ = 0

where

A(z1, z2, c1, c−1, c3, c−3, b0) = c1(1− a0 − b0)z
2
1 − c3x0z1z2

+[c1(a0 + b0)− c−1 + c3x0 − c1]z1 + c−1.

If we try to compute ∂m+nG̃/∂zm
1 ∂zn

2, we will run into the so called moment-closure
problem. Thus it is difficult to find the equilibrium distribution analytically and it has
to be simulated.

3.4 Multiple time scale problems

In the reduction method of a three time scale reaction network, it is essential to compute
the reduced propensity function Q̂s

k(n̂) = E[Q̃s
k(ñ)|n̂], where Q̃s

k(ñ) = E[Qs
k(n)|ñ].
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To find Q̂s
k(n̂), we first compute Q̃s

k(ñ) via a first reduction. This can be done by the
computational method for a two time scale system described in the previous section.
For the second reduction to compute Q̂s

k(n̂) = E[Q̃s
k(ñ)|n̂], one should note that the

variable is not n but ñ after the first reduction. Thus, by replacing n by ñ and applying
the argument in the previous section to the first reduced system, one can compute
Q̂s

k(n̂) = E[Q̃s
k(ñ)|n̂] after finding the equilibrium probability of the medium subsys-

tem in the first reduced system. Higher multiple time scale problems may be reduced
similarly.

4 Applications

4.1 Enzyme-substrate model

This example is used to illustrate Theorem 2. The enzyme-substrate model,

E + S
c1−→←−

c−1
E S

c2→ E + P, (4.1)

is a simple but important nonlinear reaction network. We assume that the reversible
reaction between E+ S and E S is a fast reaction and the production of P from E S is a
slow reaction. Then V f = [[−1,−1, 1, 0]T , [1, 1,−1, 0]T ] and V s = [1, 0,−1, 1]T
and

A f =
⎡

⎣
1 0 1 0
0 1 1 0
0 0 0 1

⎤

⎦. (4.2)

Note that the rows of A f form a basis of N ((V f )T ). Let ñ = A f n = (n1 + n3, n2 +
n3, n4)

T . Then the reduced master equation (2.20) is

d p̃(ñ, t)

dt
=

∑

�

{
E[Qs

�(n − Ṽ s
� ) | ñ − Ṽ s

� ] p̃(ñ − Ṽ s
� , t)

− E[Qs
�(n) | ñ] p̃(ñ, t)

}
(4.3)

= c2 E[n3|ñ − Ṽ s] p̃(ñ − Ṽ s, t)− c2 E[n3|ñ] p̃(ñ, t).

Let n(0) = (e0, s0, 0, 0). Then n1 + n3 = e0 and n2 + n3 + n4 = s0. Since Ṽ s =
A f V s = [0,−1, 1]T and ñ− Ṽ s = [n1+ n3, n2+ n3+ 1, n4− 1]T = [e0, s0− n4+
1, n4 − 1]T , one can rewrite Eq. 4.3 as

d p̃(n4, t)

dt
= c2 E[n3|n4 − 1] p̃(n4 − 1, t)− c2 E[n3|n4] p̃(n4, t). (4.4)

To implement a stochastic simulation algorithm using (4.4), we first compute the
conditional probability E[n3|n4] =∑

n3 p̃(n3|n4) where the summation is taken over
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Fig. 1 Enzyme-substrate model. Comparisons of the mean and standard deviation of the product P with
(dotted line) and without (solid line) the QSSA. Simulations are based on 5000 realizations with c1 =
c−1 = 1 and c2 = 0.1. a n(0) = (10, 100, 0, 0). b n(0) = (1000, 100, 0, 0) (refer color figures for online)

all possible states of n3. For the enzyme-substrate model, the conditional probability
p̃(n3|n4) is the equilibrium probability distribution of the fast subsystem

E + S
c1−→←−

c−1
E S.

The formula and computations of E[n3|n4] are given in Appendix 1. Figure 1 con-
tains the simulation results of the mean and standard deviation of the product P with
and without the QSSA. A similar numerical result was shown in [9]. Rao and Arkin
have done similar work on the enzyme-substrate model using the stochastic version of
Michaelis-Menten approximation [12]. However, their approximations are valid only
when the substrate is in excess of the enzyme which is not needed in our method.

4.2 Enzyme-substrate-inhibitor model

This example is used to illustrate Theorem 1. The enzyme-substrate-inhibitor model
is
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E + S
c1�
�
c−1

E S
c2→ E + P, E + I

c3�
�
c−3

E I. (4.5)

where � indicates a fast reaction and→ indicates a slow reaction. Let n1, n2, n3, n4,
n5, n6 denote the number of molecules of species E, S, E S, I, E I, P , respectively,
and let n(0) = (1, 3, 0, 2, 0, 0). Then the state diagram is

(0, 3, 0, 1, 1, 0)

c−3�
�
2c3

(1, 3, 0, 2, 0, 0)

3c1�
�

c−1

(0, 2, 1, 2, 0, 0)

↓c2

(0, 2, 0, 1, 1, 1)

c−3�
�
2c3

(1, 2, 0, 2, 0, 1)

2c1�
�

c−1

(0, 1, 1, 2, 0, 1)

↓c2

(0, 1, 0, 1, 1, 2)

c−3�
�
2c3

(1, 1, 0, 2, 0, 2)

c1�
�

c−1

(0, 0, 1, 2, 0, 2)

↓c2

(0, 0, 0, 1, 1, 3)

c−3�
�
2c3

(1, 0, 0, 2, 0, 3)

There are eleven states, labeled from top to bottom and from left to right as m1, . . . ,

m11, respectively. Let D1 = {m1, m2, m3}, D2 = {(m4, m5, m6}, D3 = {m7, m8,

m9} and D4 = {m10, m11}. Under the QSSA, we obtain a reduced system in the slow
time scale

D1 → D2 → D3 → D4.

The propensity matrix K f for the fast reactions is

K f =

⎡

⎢⎢⎢⎣

K f
1

K f
2

K f
3

K f
4

⎤

⎥⎥⎥⎦

where

K f
1 =

⎡

⎣
−c−3 2c3 0
c−3 −(3c1 + 2c3) c−1
0 3c1 −c−1

⎤

⎦ , K f
2 =

⎡

⎣
−c−3 2c3 0
c−3 −2(c1 + c3) c−1
0 2c1 −c−1

⎤

⎦

K f
3 =

⎡

⎣
−c−3 2c3 0
c−3 −(c1 + 2c3) c−1
0 c1 −c−1

⎤

⎦ and K f
4 =

[−c−3 2c3
c−3 −2c3

]
.

are the propensity matrices for Di , i = 1, 2, 3, 4, respectively. The eigenvectors
corresponding to the zero eigenvalue of the K f

i ’s are �̂��1 = [2β, 1, 3α]T , �̂��2 =
[2β, 1, 2α]T , �̂��3 = [2β, 1, α] and �̂��4 = [2β, 1]T where α = c1/c−1 and β =
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c3/c−3. Let ���i = �̂��i/‖�̂��i‖which is a probability vector. Here ‖�̂��i‖ denotes the sum
of all components of �̂��i . Then L K s� is equal to

⎡

⎢⎢⎣

[1 1 1]
[1 1 1]

[1 1 1]
[1 1]

⎤

⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 −c2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 c2 0 0 0 0 0 0 0 0
0 0 0 0 0 −c2 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 c2 0 0 0 0 0
0 0 0 0 0 0 0 0 −c2 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 c2 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎣

���1
���2

���3
���4

⎤

⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c2(���1)3 0 0 0

c2(���1)3 −c2(���2)3 0 0

0 c2(���2)3 −c2(���3)3 0

0 0 c2(���3)3 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

where (���i )3 means the third component of the vector���i . From Theorem 1, the reduced
system is

dp̃(t)

dt
= L K s�p̃(t) (4.6)

where p̃(t) is an 11-dimensional vector and the i th-component p̃i (t) = Prob{ñ(t) =
mi }. To find ñ, we observe from (4.5) that

V f = [ [−1 − 1 1 0 0 0 ]T , [1 1 − 1 0 0 0 ]T , [−1 0 0 − 1 1 0]T , [ 1 0 0 1 − 1 0]T ].

Therefore,

A f =

⎡

⎢⎢⎣

1 0 1 0 1 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1

⎤

⎥⎥⎦ , and ñ = A f n =

⎡

⎢⎢⎣

n1 + n3 + n5
n2 + n3
n4 + n5

n6

⎤

⎥⎥⎦ .

In Fig. 2, we compare the solutions of the full system with the solutions of the reduced
system given by (4.6).
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Fig. 2 Enzyme-substrate-inhibitor model. The four figures correspond to the time evolutions of Prob (P =
i) for i = 0, 1, 2, 3, respectively with c1 = c−1 = c3 = 1, c2 = 0.1 and n(0) = (1, 3, 0, 2, 0, 0) . Solu-
tions without the QSSA are shown as solid line while solutions with the QSSA (4.6) are shown as dotted
line (refer color figures for online)

4.3 Three time scale model of a linear system

In this section, we consider a three time scale reaction network with four species

A1

k1/ε
2

−→←−
k−1/ε

2
A2

k2/ε−→←−
k−2/ε

A3

k3−→←−
k−3

A4 (4.7)

where ki , i = ±1,±2,±3 have the same order of magnitude and 0 < ε � 1. Since all
reactions in (4.7) are monomolecular reactions, the corresponding system of ordinary
differential equations (2.1) is linear. Let pi be the probability that a molecule is in
the state Ai , i = 1, 2, 3, 4 and let p = (p1, p2, p3, p4). The master equation for this
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system is

dp(t)

dt
=

(
1

ε2 K1 + 1

ε
K2 + K3

)
p(t)

=

⎛

⎜⎜⎝
1

ε2

⎡

⎢⎢⎣

−k1 k−1 0 0
k1 −k−1 0 0
0 0 0 0
0 0 0 0

⎤

⎥⎥⎦+
1

ε

⎡

⎢⎢⎣

0 0 0 0
0 −k2 k−2 0
0 k2 −k−2 0
0 0 0 0

⎤

⎥⎥⎦

+

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 −k3 k−3
0 0 k3 −k−3

⎤

⎥⎥⎦

⎞

⎟⎟⎠ p(t). (4.8)

To obtain a reduced system, we first apply the QSSA to the reaction between A1
and A2 in (4.7). Then the first reduced system is

dp1(t)

dt
= L1

(
1

ε
K1 + K0

)
�1p1(t)

=
⎡

⎣
1 1 0 0
0 0 1 0
0 0 0 1

⎤

⎦

⎛

⎜⎜⎝
1

ε

⎡

⎢⎢⎣

0 0 0 0
0 −k2 k−2 0
0 k2 −k−2 0
0 0 0 0

⎤

⎥⎥⎦+

⎡

⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 −k3 k−3
0 0 k3 −k−3

⎤

⎥⎥⎦

⎞

⎟⎟⎠

×

⎡

⎢⎢⎢⎢⎢⎣

k−1

k1 + k−1
0 0

k1

k1 + k−1
0 0

0 1 0
0 0 1

⎤

⎥⎥⎥⎥⎥⎦
p1(t)

=

⎛

⎜⎜⎜⎝
1

ε

⎡

⎢⎢⎢⎣

− k1k2

k1 + k−1
k−2 0

k1k2

k1 + k−1
−k−2 0

0 0 0

⎤

⎥⎥⎥⎦+
⎡

⎣
0 0 0
0 −k3 k−3
0 k3 −k−3

⎤

⎦

⎞

⎟⎟⎟⎠ p1(t) (4.9)

and the reduced chemical system is
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Fig. 3 Three time scale model (4.7) with p(0) = (.4, .3, .2, .1), each ki = 1 and ε = 0.1. Comparison
between solutions obtained by solving system (4.8) (solid line) and the first reduced system (4.9) (dotted
line). a probability that a molecule is in state A1 or A2, b probability that a molecule is in state A3 (refer
color figures for online)

B1

k∗2/ε−→←−
k−2/ε

B2

k3−→←−
k−3

B3 (4.10)

where k∗2 = k1k2/(k1 + k−1), B1 is the reduced system of the fast reaction in (4.7),
B2 = A3 and B3 = A4. Note that we can obtain the approximate value of the original
probability p by using p = �1 p1.

Next we apply the QSSA to the first reaction in (4.10) and obtain a second reduced
system

dp2(t)

dt
= L2 K0�2p2(t)

=
[

1 1 0
0 0 1

] ⎡

⎣
0 0 0
0 −k3 k−3
0 k3 −k−3

⎤

⎦

⎡

⎣
b1 0
b2 0
0 1

⎤

⎦ p2(t)

=
[−k3b2 k−3

k3b2 −k−3

]
p2(t)

(4.11)

where b1 = (k1 + k−1)k−2/(k1k−2 + k−1k−2 + k1k2) and b2 = k1k2/(k1k−2 +
k−1k−2+ k1k2). Note that after the second reduction, one can obtain the approximate
value of the original probability p by using p = �1 p1 = �1�2 p2. Results of our
simulations are shown in Figs. 3 and 4.

4.4 A stochastic reaction-diffusion model

In this section, we give another example of a three time scale model. We consider the
simulation of a three-dimensional stochastic reaction-diffusion equation based on the
gene expression model in [13]. The idea here is to divide the spatial domain, which is
assumed to be a cube, into equal compartments of size h and model diffusion between
adjacent compartments as a first-order chemical reaction with reaction rate D/h2
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Fig. 4 Three time scales model with (p1, p2, p3, p4) = ( .4, .3, .2, .1), each ki = 1 and ε = 0.1. Com-
parison between solutions obtained by solving system (4.8) (solid line) and the second reduced system
(4.11) (dotted line). a probability that a molecule is in state A1, A2, or A3, b probability that a molecule is
in state A4 (refer color figures for online)

where D is bulk diffusion rate. For a more detail description of this method, see [4,8].
See also the mini survey on space in signaling pathways [14].

We consider a cell with a volume of V = 1 µm3. A DNA binding site is fixed at
the center and is surrounded by freely diffusing RNA polymerase (RNAp) with bulk
diffusion rate D . DNA and RNAp can bind with rate k1 to form DNA-RNAp complex
which can dissociates back to DNA and RNAp with rate k−1, or produce, with rate k2,
a protein P with subsequent dissociation to DNA and RNAp. The protein is degraded
with rate k3. The model can be summarized by the following reaction network

DNA+ RNAp
k1−→←−

k−1

DNA-RNAp
k2→ P + DNA+ RNAp, P

k3→ φ (4.12)

with diffusion of RNAp. From [13], the reaction rate constants are k1 = 3 ×
109 M−1s−1, k−1 = 21.5s−1, k2 = 89.55s−1 and k3 = 0.04s−1. Bulk diffusion
rate constant is D = 1 µm2s−1. Initial numbers of molecules are DNA = 1, RNAp =
18, and P = 0. We need to convert the reaction rate constants to transition probabil-
ities using the formulas in Sect. 3.1. Doing so, the transition probability

c1 = k1

NA · Vh
= 3× 109

6.02214292× 1023 × h3 × 10−15
s−1 ≈ 4.9816

h3 s−1,

where Vh denotes the volume of a cubic compartment of size h. Since the reactions with
transition rate constants k−1, k2 and k3 are first order, their corresponding transition
probabilities are c−1 = 21.5 s−1, c2 = 89.55 s−1 and c3 = 0.04 s−1.

To model diffusion, we divide the cell volume V into eight identical cubic com-
partments with size h = 0.5 µm. Then we have

c1 = 4.9816

h3 s−1 = 39.8528s−1
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An analysis of the proper size of the compartment has been made in [8]. A proper size
h of the compartment should satisfy the condition λ� h � L , where λ is the mean
free path and L is the size of the whole system. In this system, λ ≈ 1/18 = 0.0556 µm
[13] and L = 1 µm.

Since we distinguish between species in different compartments, the number of
species in the whole system has increased from 4 to 32. Diffusion between adja-
cent compartments is modeled as a first-order reaction with reaction rate D/h2 =
1/h2 s−1 = 4 s−1. Thus, considering the magnitude of each transition probability,
one can consider the ’binding/unbinding of DNA and RNAp’ and ’protein produc-
tion’ as fast reactions of order O(10), ’diffusion’ as a medium speed reaction of order
O(1), and ’decay of protein’ as a slow reaction of order O(10−2). This model is thus
a three time scale model. However, the production of protein in the fast subsystem
is not a reversible reaction and hence the graph of the fast subsystem is not strongly
connected. To overcome this difficulty, we assume that the production of protein is a
slow reaction with rate c2 = 0.1 s−1 and then apply our reduction method to this mod-
ified gene expression model. We now briefly describe the first and second reduction
methods for this model.

We denote the number of DNA, RNAp, DNA-RNAp complex and protein in
i th compartment by ni

1, ni
2, ni

3 and ni
4, respectively, for i = 1, . . . , 8. Let n =

(n1
1, n1

2, · · · , n8
3, n8

4). In each compartment, the stoichiometries for the fast reactions
and slow reactions are

W f =

⎡

⎢⎢⎣

−1 1
−1 1
1 −1
0 0

⎤

⎥⎥⎦ and W s =

⎡

⎢⎢⎣

1 0
1 0
−1 0
1 −1

⎤

⎥⎥⎦ ,

respectively. Using them, one can write the stoichiometries V f and V s for the whole
system in the form of tensor product

V f = I8 ⊗W f , V s = I8 ⊗W f .

For the diffusion of RNAp with medium speed, we denote its stoichiometry by V m ,
which is a 32 × 24 matrix that can be obtained from the connectivity of the 8-com-
partment system. For example, if we write the stoichiometry of diffusion of RNAp
from the first compartment into second compartment in the first column V m

1 of V m ,
we have a 32× 1 column vector

V m
1 = (0, −1, 0, 0, 0, 1, 0, 0, · · · 0, 0, 0, 0)T .

Similarly, we can find other columns of V m . The entire matrix V m is given in
Appendix 2.

Let 1
ε2

Q f
i , i = 1, . . . , 16 be the propensities of the fast reactions in each compart-

ment, let 1
ε1

Qm
j , j = 1, . . . , 24, be the propensities of RNAp diffusion between two

adjacent compartments, and let Qs
k, k = 1, . . . , 16, be the propensities of the slow
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reactions in each compartment. Here ε2 = 0.01, ε1 = 0.1 and Q f
i , Qm

j and Qs
k are of

the same magnitude O(0.1). Under these assumptions, the master equation is

dp(n, t)

dt
=

16∑

i=1

1

ε2

[
Q f

i (n − V f
i ) p(n − V f

i , t)− Q f
i (n) p(n, t)

]

+ 1

ε1

24∑

j=1

[
Qm

j (n − V m
j ) p(n − V m

j , t)− Qm
j (n) p(n, t)

]

+
16∑

k=1

[
Qs

k(n − V s
k ) p(n − V s

k , t)− Qs
k(n) p(n, t)

]
. (4.13)

We now proceed to reduce Eq. 4.13.

First reduction : elimination of fast reactions

To eliminate the fast reactions, let B f be the matrix whose rows form a basis of
N [(W f )T ];

B f =
⎡

⎣
1 0 1 0
0 1 1 0
0 0 0 1

⎤

⎦.

Then A f ≡ I8 ⊗ B f is a matrix whose rows form a basis of N [(V f )T ]. Let ñ =
A f n = (n1

1 + n1
3, n1

2 + n1
3, n1

4, . . . , n8
1 + n8

3, n8
2 + n8

3, n8
4), Ṽ m = A f V m , and let

Ṽ s = A f V s . The master equation obtained after the first reduction is

d p̃(ñ, t)

dt
= 1

ε1

24∑

j=1

[
Q̃m

j (ñ − Ṽ m
j ) p̃(ñ − Ṽ m

j , t)− Q̃m
j (ñ) p̃(ñ, t)

]

+
16∑

k=1

[
Q̃s

k(ñ − Ṽ s
k ) p̃(ñ − Ṽ s

k , t)− Q̃s
k(ñ) p̃(ñ, t)

]
(4.14)

where Q̃m
j = E[Qm

j (n)|ñ] and Q̃s
j = E[Qs

j (n)|ñ]. To find Q̃m
j and Q̃s

j , we compute

the equilibrium probability of the fast subsystem DNA + RNAp
k1−→←−

k−1

DNA-RNAp in

each compartment. This can be done by using the method in Sect. 3.3.

Second reduction : elimination of medium reactions

In the second reduction, we eliminate the medium reactions in Eq. 4.14. To do so,
we first find Ãm which is a matrix whose rows form a basis of N [(Ṽ m)T ]. (See the
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Table 1
Method Relative CPU time for single realization

Exact stochastic method 11250
Tau-leaping method 175
First reduction method 1062
Second reduction method 1

Appendix 2 for complete expression of Ṽ m .)

Ãm =

⎡

⎢⎢⎢⎢⎢⎣

Bm

Bm

. . .

Bm

Cm Cm · · · Cm

⎤

⎥⎥⎥⎥⎥⎦
,

where Bm =
[

1 0 0
0 0 1

]
, Cm = [0 1 0] and there are 8 blocks Bm and Cm . Let

n̂ = Ãmñ = (n1
1+n1

3, n1
4, . . . , n8

1+n8
3, n8

4, n1
2+n1

3+· · ·+n8
2+n8

3) and V̂ s = Ãm Ṽ s .
Then the reduced master equation is

d p̂(n̂, t)

dt
=

16∑

k=1

[
Q̂s

k(n̂ − V̂ s
k ) p̂(n̂ − V̂ s

k , t)− Q̂s
k(n̂) p̂(n̂, t)

]
(4.15)

where Q̂s
k(n̂) = E[Q̃s

k(ñ)|n̂]. To compute Q̂s
k(n̂), we should find the equilibrium

probability for the diffusion of RNAp which is a first-order reaction. It can be shown
that the equilibrium probability distribution is multinomial [4]. Using this fact, one
can compute Q̂s

k(n̂).
Results of our simulations are shown in Fig. 5. We show the results for proteins in

the first and eighth compartments. Results in other compartments are almost the same.
Since simulations by Gillespie algorithm requires a large amount of time, we use the
tau-leaping method discussed in Sect. 3.2 to speed up the simulations. The relative
CPU time spent for one realization is compared in the following table.

5 Discussion

The underlying assumption of this paper is that kinetics in the system can be identi-
fied as ones with distinct time scales. While the separation of time scales may not be
obvious in certain reaction systems, many real biochemical or biological systems are
known to evolve like a stiff system with distinct time scales in the region of interest in
the whole state space. For such systems, our method can be utilized to approximate
the solutions of the master equation accurately with considerably less computational
load and time.

123



1316 J Math Chem (2009) 46:1292–1321

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

time(second)

M
ea

n 
of

 p
ro

te
in

 in
 1

st
 c

el
l

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

time(second)

M
ea

n 
of

 p
ro

te
in

 in
 8

th
 c

el
l

0 50 100 150 200 250 300
0

0.5

1

1.5

time(second)

S
D

 o
f p

ro
te

in
 in

 1
st

 c
el

l

0 50 100 150 200 250 300
0

0.5

1

1.5

time(second)

S
D

 o
f p

ro
te

in
 in

 8
th

 c
el

l

(a) (b)

Fig. 5 Gene expression model with RNAp diffusion. Comparison between solutions obtained by Gilles-
pie tau-leaping method (solid line), first reduction method (dashed line) and the second reduction method
(dotted line). Tau-leaping and second reduction methods are based on 10000 realizations and first reduction
method is based on 7000 realizations. a Mean and standard deviation of number of protein molecules in the
first compartment. b Mean and standard deviation of number of protein molecules the eighth compartment
(refer color figures for online)

When a system has unbounded state space, the dynamics of the system are described
by transition between infinitely many possible states. In such a case, the transition
matrix K and the probability vector p in the governing equation are infinite dimen-
sional and very little is known about infinite dimensional ODE systems. Thus, devel-
oping a reduction method for such systems will be one of the major goal of our research
in the future.

Acknowledgements This research was supported in part by the Institute for Mathematics and its Appli-
cations with funds provided by the National Science Foundation.

Appendix 1: Equilibrium distribution of a fast subsystem

Here we compute the equilibrium distribution of the reaction
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A + B
c1−→←−

c−1
C

by a method similar to [10]. Let n = (n1, n2, n3) where n1, n2, n3 denote the number
of molecules of species A, B, C , respectively. Let n(0) = (a0, b0, c0). Then since
n1(t)+ n3(t) = a0+ c0 and n2(t)+ n3(t) = b0+ c0 for all t > 0, the random vector
n may be represented by n1 alone and the master equation for species A is

d Pa(t)

dt
= c1[(a + 1)(b0 − a0 + a + 1)Pa+1(t)− a(b0 − a0 + a)Pa(t)]
+ c−1[(a0 + c0 − a + 1)Pa−1(t)− (a0 + c0 − a)Pa(t)]

where Pa(t) = Prob{n1(t) = a}, a = 0, 1, 2, . . . . Let G(z, t) = ∑
a za Pa(t) be

the moment generating function of Pa(t). Multiplying the master equation by za and
summing over a, we obtain

∑

a

za d Pa(t)

dt
= c1

∑

a

za(a + 1)(b0 − a0 + a + 1)Pa+1

− c1

∑

a

zaa(b0 − a0 + a)Pa + c−1

∑

a

za(a0 + c0 − a + 1)Pa−1

− c−1

∑

a

za(a0 + c0 − a)Pa . (A.1)

The four terms on the right of (A.1) can be rewritten as

c1

∑

a

za(a + 1)(b0 − a0 + a + 1)Pa+1 = c1(b0 − a0 + 1)Gz + c1zGzz

−c1

∑

a

zaa(b0 − a0 + a)Pa = −c1(b0 − a0)zGz − c1z2Gzz − c1zGz

c−1

∑

a

za(a0 + c0 − a + 1)Pa−1 = c−1(a0 + c0)zG − c−1z2Gz

−c−1

∑

a

za(a0 + c0 − a)Pa = −c−1(a0 + c0)G + c−1zGz

since

∑

a

zaa(b0 − a0)Pa = (b0 − a0)zGz

and

∑

a

zaa2 Pa =
∑

a

zaa(a − 1)Pa +
∑

a

zaa Pa = z2Gzz + zGz .

From (A.1), we obtain
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Gt = c1z(1− z)Gzz − (c−1z2 + [c1(b0 − a0 + 1)− c−1]z − c1(b0 − a0 + 1))Gz

+ c−1(a0 + c0)(z − 1)G. (A.2)

Therefore, the steady-state equation is

c1z(1− z)Gzz − (c−1z2 + (c1(b0 − a0 + 1)− c−1)z − c1(b0 − a0 + 1))Gz

+ c−1(a0 + c0)(z − 1)G = 0. (A.3)

Since

c−1z2 + (c1(b0 − a0 + 1)− c−1) z − c1(b0 − a0 + 1)

= (z − 1)(c−1z + c1(b0 − a0 + 1)),

dividing both sides of (A.3) by c1z(1− z), we obtain

Gzz +
(

b0 − a0 + 1

z
+ q

)
Gz − q(a0 + c0)

z
G = 0 (A.4)

where q = c−1/c1. By the change of variable w = −qz, Eq. A.4 becomes a Kummer’s
equation

w
d2 f

dw2 + (B − w)
d f

dw
− A f = 0

which has two linearly independent solutions M(A, B, w) and U (A, B, w) [1, p. 504].
The function U (A, B, w) is not defined at w = 0 while the function

M(a, b, w) = 1+ aw

b
+ (a)2w

2

(b)22! + · · · +
(a)nwn

(b)nn! + · · ·

where (a)n = a(a + 1)(a + 2) . . . (a + n − 1), (a)0 = 1. Since G(1) = 1, the
steady-state solution is

G(z) = M(−a0 − c0, b0 − a0 + 1,−qz)

M(−a0 − c0, b0 − a0 + 1,−q)
, b0 ≥ a0.

The condition b0 ≥ a0 is necessary because M(a, b, w) is undefined if a, b are both
negative integers. If b0 < a0, then by the symmetry of the reaction system, one obtains

G(z) = M(−b0 − c0, a0 − b0 + 1,−qz)

M(−b0 − c0, a0 − b0 + 1,−q)
, a0 > b0.

Since Pa(t) = (1/a!) ∂aG(z, t)/∂za |z=0, the steady-state distribution of species A is

PA(k) = D
Qk

k!
(a0 + c0)(a0 + c0 − 1) · · · (a0 + c0 − k + 1)

(b0 − a0 + 1)(b0 − a0 + 2) · · · (b0 − a0 + k)
, k = 1, . . . , a0 + c0
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where D is a normalization constant. If a0 > b0, then the steady-state distribution of
species B is

PB(k) = D
Qk

k!
(b0 + c0)(b0 + c0 − 1) · · · (b0 + c0 − k + 1)

(a0 − b0 + 1)(a0 − b0 + 2) · · · (a0 − b0 + k)
, k = 1, . . . , b0 + c0.

Appendix 2: Matrices Vm and Ṽ m in reaction-diffusion model

V m =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

123



1320 J Math Chem (2009) 46:1292–1321

Ṽ m =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 1 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 −1 0 0 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 −1 0 0 −1 1 −1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0 0 0 0 0 0 0 −1 1 −1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 −1 0 0 −1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 0 0 0 0 1 −1 −1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 −1 0 0 1 −1 0 0 1 −1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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